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Abstract

Background: Surveillance of hospital-acquired infections (HAIs) is the foundation of infection control. Machine learning (ML) has been
demonstrated to be a valuable tool for HAI surveillance. We compared manual surveillance with a supervised, semiautomated, ML method,
and we explored the types of infection and features of importance depicted by the model.

Methods: From July 2021 to December 2021, a semiautomated surveillance method based on the ML random forest algorithm, was
implemented in a Brazilian hospital. Inpatient records were independently manually searched by the local team, and a panel of independent
experts reviewed the ML semiautomated results for confirmation of HAI.

Results: Among 6,296 patients, manual surveillance classified 183 HAI cases (2.9%), and a semiautomated method found 299 HAI cases
(4.7%). The semiautomated method added 77 respiratory infections, which comprised 93.9% of the additional HAIs. The ML model
considered 447 features for HAI classification. Among them, 148 features (33.1%) were related to infection signs and symptoms; 101 (22.6%)
were related to patient severity status, 51 features (11.4%) were related to bacterial laboratory results; 40 features (8.9%) were related to invasive
procedures; 34 (7.6%) were related to antibiotic use; and 31 features (6.9%) were related to patient comorbidities. Among these 447 features,
229 (51.2%) were similar to those proposed by NHSN as criteria for HAI classification.

Conclusion: TheML algorithm, which includedmost NHSN criteria and>200 features, augmented the human capacity for HAI classification.
Well-documented algorithm performances may facilitate the incorporation of AI tools in clinical or epidemiological practice and overcome
the drawbacks of traditional HAI surveillance.

(Received 21 March 2023; accepted 16 September 2023)

Hospital-acquired infection (HAI) surveillance is the cornerstone
of infection prevention. In the United States, HAIs are responsible
for 72,000 preventable deaths each year.1 During the coronavirus
disease 2019 (COVID-19) pandemic, we have witnessed increases
in most HAI rates.2 In Brazil, the criteria for HAI surveillance is
defined by the National Health Surveillance Agency (Anvisa, the
Agência Nacional de Vigilância Sanitária), which are mainly based
on the National Healthcare Safety Network (NHSN) criteria for
infection classification.3,4

Most often, the search for HAI is conducted manually by
well-trained infection control professionals (ICPs). However, this
process may suffer from interrater variability, depending on ICP
expertise, and is time-consuming. Furthermore, the chosen
method, global or device/culture-focused surveillance, for example,
may produce variable results.5

Recently, automated and semiautomated methods that use data
from electronic health records (EHR) have been developed. In
semiautomated methods, the possible infections above a threshold
are shown and an individual evaluates these infections and
confirms or discards the diagnosis.6 These methods have shown
good performance for HAI classification. However, they show
variable performance in sensitivity, specificity, predictive values,
and accuracy.7,8 Factors like the hospital setting, type of infection
surveilled, and patient population analyzed may contribute to
these variations.8

In a previous study, in which we searched for infections
globally, the machine learning (ML) model outperformed manual
surveillance by 42%, and time spent on record review decreased by
71%.9 In this study, we compared manual surveillance with the
supervised ML semiautomated method, and we explored the types
of infection that each type of surveillance identified as well as the
features of importance depicted by the ML model.

Methods

Tacchini Hospital is a general hospital with 251 beds that provides
clinical and surgical care in southern Brazil. It serves ∼400,000
people and includes clinical specialties and surgical procedures for
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general and pediatric surgery, gynecology, mastology, obstetric
surgeries, oncology, neurology, orthopedics, plastic, vascular, and
urology surgeries. During the study period, the hospital had 2 adult
ICUs totaling 30 beds: 26 beds for clinical and four for surgical
patients. The infection control team, composed of a nurse and an
infectious disease physician, is responsible for HAI surveillance.
Manual surveillance was performed by the hospital infection
control team based on bacterial culture results, and patient records
were collected for review. Between July and December 2021, a
semiautomated surveillance method based on ML algorithms as
described by Ferreira et al9 was implemented in the hospital. In
this semiautomated process, the artificial intelligence (AI) tool
classifies patients with potential HAIs, and ICPs subsequently
validate the classification.

The performance of the ML algorithm has been reported
elsewhere.9,10 For this study, the manual diagnosis was reviewed by
independent specialists and the golden standard was reclassified
strictly according to CDC Anvisa criteria. The ML model was
retrained according to these new standards. All adult inpatients
(aged ≥18 years) were included, but individuals treated in
outpatient areas were not eligible.

Data queries analyzed by ML models included laboratory
results, radiology results (unstructured data), healthcare profes-
sional records (unstructured data), antimicrobial prescriptions,
vital signs, and invasive procedures. TheMLmodels were based on
the random forest algorithm for supervised training because of
accuracy and relative ease of explanation. The random forest
algorithm randomly uses decision trees to explore potential
connections of each variable to an outcome.9

The features in the model refer to the individual measurable
properties or characteristics of the data that are used as inputs to an
ML algorithm. The importance of a feature is the average
information gained during the forest construction; it is expressed
as a percentage.

The infection control teammanually classified the features used
in the ML method as follows: concerning signs and symptoms
of an infection, patient severity status, variables related to patient
comorbidities, antibiotic use, invasive procedures, risk factors for
infection, and NHSN- and Anvisa-related criteria. The following
features were reclassified or flagged as proxy features: (1) features
related to signs and symptoms of infection, antibiotic use, and
laboratory culture results and (2) features related to risk factors for
infection, patient severity status, invasive procedures, length of
stay, patient comorbidities. Considering the data for the entire year
of 2021, we ran the ML HAI classification using all features in the
algorithm model. We then compared to the performance of risk
variables (excluding from the model proxy variables) and proxy
variables (excluding from the model the risk variables) using the
random forest model in terms of sensitivity, precision (positive
predictive value), and accuracy.

This study generated novel data concerning cases identified
by the ML algorithm, ranked by probability of HAI. These results
highlighted the most important variables or features for the
model and facilitated a comparative analysis between manual
surveillance and semiautomated surveillance, stratified by HAI
classification.

Nonparametric isotonic regression calibration was used to
analyze false-positive and false-negative results. For patient
comparisons, the χ2 test was used for categorical variables.
Coefficient κ of agreement for categorical outcomes was also
used. A 2-tail significance level of 5% was considered, and data
analyses were performed using the Statistical Package for the

Social Sciences (SPSS) version 16.0 software (IBM, Armonk,
NY). This research was registered in Plataforma Brasil (CAAE
no. 89737218.0.0000.5305).

Results

During the study period, from 6,296 patients, manual surveillance
classified 183 cases (2.9%) of HAI. The semiautomated surveillance
found 299 HAI cases (4.7%), 116 more cases (38.7%) than manual
surveillance. Both methods identified 180 cases, and the ML tool
missed 3 cases detected by the manual review: 1 case of ventilator-
associated pneumonia (VAP) and 2 urinary tract infections (UTIs).
Considering manual surveillance as the gold standard for infections
to be classified as HAIs, κ agreement was 0.991 (95% confidence
interval [CI], 0.982–1.0). When we included the infections not
classified by manual surveillance, the κ agreement was 0.737 (95%
CI, 0.693–0.782). The infection rate (infections per 1,000 patient
days) during the manual review was 5.3, and by automated
surveillance, the infection rate was 7.5 during the 6-month study
period.

Among the 299 cases classified by the ML tool, 68 (22.7%) were
urinary tract infections; 63 (21.1%) were ventilator-associated
pneumonia (VAP); 48 (16.0%) were tracheobronchitis; 47 (15.7%)
were non-VAP; 35 (11.7%) were surgical-site infections (SSIs);
29 (9.6%) were bloodstream infections (BSIs); 4 (1.3%) were
abdominal abscess; 2 (0.6%) were peritonitis; 1 (0.3%) was a
Clostridioides difficile infection; 1 (0.3%) was a skin and soft-tissue
infection; and 1 (0.3%) was empyema.

Compared to manual surveillance, the semiautomated method
added 77 cases (93.9% of the additional HAIs) in the respiratory
infection classification (ie, VAP, non-VAP, and tracheobronchitis).
For non-VAP and tracheobronchitis, the numbers of classified cases
more than doubled (113.6% and 182.4%, respectively), followed by
SSIs (N=15, 66.6%), urinary tract infections (N=17, 32.1%) and
bloodstream infections (N=5, 20.8%) (Table 1 and Figure 1).

Regarding the probability of HAIs identified by the algorithm,
among those ranked with probability ≥90%, 79.2% were confirmed.
AmongHAIs ranked between 80% and 89% probability, 69.2%were
confirmed, and among those ranked between 70% to 79%, 25%were
confirmed (Table 2). Furthermore, 225 (75.2%) of 299 confirmed
infections had a >70% probability of HAI indicated by the ML
algorithm. Comparing manual with semiautomated surveillance,
177 manual surveillance cases (98.3%) had a positive culture result
versus 55 (46.2%) from semiautomated surveillance (P = .001).

Table 1. Rate of HAI Classification Comparing the Reference Manual Method
and the Additional Infections Identified by Semiautomated ML Algorithm

Variable

Manual
Surveillance
(N=183),
% (n/N)

Additional Infections
Identified by Semiautomated

ML (N=116),
% (n/N)

P
Value

UTI 100.0 (52/52) 100.0 (17/17) : : :

VAP 95.3 (41/43) 55.5 (11/20) <.001

Tracheobronchitis 100.0 (16/16) 20.0 (6/30) : : :

Non-VAP 100.0 (22/22) 20.0 (5/25) : : :

SSI 95.0 (19/20) 43.7 (7/16) .001

BSI 100.0 (25/25) 100.0 (5/5) : : :

Note. HAI, hospital-acquired infection; ML, machine learning; UTI, urinary tract infection; VAP,
ventilator-associated pneumonia; SSI, surgical-site infection; BSI, bloodstream infection.
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The ML model considered 447 features or variables for HAI
case classification. Among them, 148 features (33.1%) were related to
infection signs and symptoms such as fever, secretion, edema, cough,
leukocytosis, and pulmonary infiltrate. Furthermore, 101 features
(22.6%)were related to patient severity status such as creatinine levels,
albumin levels, nutrition status, hemoglobin levels, blood oxygen,
blood pressure, and oliguria. Also, 51 features (11.4%) were related to
bacterial laboratory results, and 40 features (8.9%) were related to
invasive procedures (8.9%; N= 40 features). Finally, 34 features
(7.6%) were related to antibiotic use, and 31 features (6.9%) were
related to patient comorbidities such as cancer, COVID-19, chronic
pulmonary disease, diabetes, stroke, and obesity.

The model characterized features in terms of their importance
to HAI classification. The following features were ranked by
importance: length of stay (6.0% of relevance), meropenem use
(3.7%), intravenous antibiotic use (3.6%), number of medical notes
in EHR (2.4%), bacterial culture results (NHSN criteria; 2.2%),
number of bacterial culture results (1.9%), patient age (1.7%),
patient ventilatory status (1.7%), presence of secretion (NHSN
criteria; 1.7%), patient ward transfer (1.4%), the diagnosis of
COVID-19 (1.3%), patient being in emergency (1.2%) or intensive
care unit (1.1%) ward, number of radiology exams (1.0%), and
piperacillin-tazobactam use (1.0%). The following features
complete the top 20 most important features identified by the
ML model: infection (0.9%), edema (NHSN criteria; 0.9%), fever
(NHSN criteria; 0.9%), mechanical ventilation (0.8%) and the
number of vital signs registered in the EHR (0.8%).

Considering these 447 features, 229 (51.2%) were similar to
those proposed by the NHSN and Anvisa as criteria for HAI
classification. When we considered only features related to signs
and symptoms of infection, 118 features (79.7%) overlapped with
the NHSN and Anvisa definitions of HAI. We also classified 233
features (52.1%) as proxy variables of HAI and 173 features
(38.7%) related to infection risk. The performance of the model,
comparing all 447 features, proxy, and risk variables, is depicted in
Figure 2. Considering the 3 parameters (ie, sensitivity, precision,
and accuracy), risk variables performed better than proxy and the
overall model had the best performance.

Discussion

Results from ML models are sometimes challenging to interpret
and explore, making their implementation in real-life healthcare

situations difficult. In this study, we explored an ML model in its
features for HAI classification using the random forest (RF)
algorithm. Random forest is called an “off-the-shelf” algorithm; it
uses a lot of decision trees for classification (ensemble learning),
and it produces understandable prediction rules. A random forest
model can handle categorical, continuous, parametric, and
nonparametric data, and it is one of the best algorithms for
classification of 2 groups of data (eg, infected and not infected).11

Fernandez-Delgado et al12 evaluated 179 classifiers from 17
families, and the random forest algorithms were the best, achieving
94% accuracy. Considering the semiautomatedmethod (man-and-
machine approach), human review can improve the specificity and
precision of algorithm performance in daily practice.11

Furthermore, the model used several features that included most
NHSN criteria, which may increase the generalizability of the
algorithm application.

Proxy variables are commonly used for surveillance applica-
tions. In one study, patients were screened using proxy indicators
such as antimicrobial use, white blood cell counts, and fever.
Antimicrobial use identified 95% of those at higher risk of
infection.13 Most NHSN criteria are related to proxy variables such
as fever, white blood cell count, laboratory culture results, and
radiology results such as consolidation, cavitation, and infiltrates.3

A few other criteria may be related to a condition that can increase
the risk for infection, for example, the use of devices or other
invasive procedures. Most of the criteria for immunosuppressed
patients (eg, leukemia, lymphoma, HIV positive, splenectomy,
chemotherapy, and those on steroids) may be related to risk factors
for infection.3 The ML model included a combination of proxy
features and risk-related variables. This combination performed
better than proxy or risk factors features alone, especially in terms
of sensitivity and positive predictive value. Notably, the model
including only risk variables performed better than proxy
variables, indicating that patient comorbidities or severity and
other risk factors for infection could be used to identify patients for
possible HAI evaluation and prevention.

Traditional surveillance techniques must be patient based,
which means seeking infections during a patient’s stay, and
screening a variety of data: laboratory results; antibiotic use;
admission, discharge, and transfer data; radiology results,
pathology databases, patient charts, healthcare worker notes,
physical exam notes, vital signs, and invasive device use.
Laboratory-based surveillance should not be used alone, primarily
because of a lack of sensitivity.3,14 In this study, manual surveillance
based on laboratory culture results affected HAI classification
results. The semiautomated method greatly improved sensitivity.
The semiautomated methodology was not dependent only on
laboratory culture results for HAI classification; it surveyed data
from all inpatient care, including vital signs and clinical notes. This
aspect was important for improving performance not only for
cases dependent on laboratory culture results (eg, BSI and UTI) but
also for infections with criteria that do not depend on culture
results (eg, respiratory infection and SSI).

When we compared both methods for those infections that
classification is dependent on laboratory culture results, semi-
automated surveillance outperformed manual search by 31.6%,
demonstrating that ML can overcome the difficulties of traditional
manual surveillance.

Traditional surveillance methods have limitations, and AI
initiatives can overcome some of these drawbacks, such as fatigue,
strenuous activities, and lack of time. Russo et al7 demonstrated
that electronic surveillance maintained high levels of sensitivity

Table 2. The Number of Confirmed Cases Identified by the Machine Learning
Algorithm Ranked by Probability of HAI

% Probability of HAI
Obtained by ML Algorithm

No.
(Confirmed/

Suspected Cases)

% of
Confirmed
Cases

≥90 99/125 79.2

80–89 72/104 69.2

70–79 51/203 25.1

60–69 29/245 11.8

50–59 28/338 8.3

40–59a 15/538 2.8

30–39a 4/3516 0.11

Note. HAI, hospital-acquired infection; ML, machine learning.
aInfectionswith probability<50%were reviewed because theywere classified as infections by
the manual surveillance method.
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(84%–100%) and specificity (88%–100%) and a reduction effect
in time spent on infection prevention of 50%–90%. One of the
applications of AI is augmenting human capabilities at the same
time that it reduces workload.9 Scardoni et al8 reviewed 27 studies
on AI tools for HAI surveillance and found moderate evidence
that ML-based models perform equal to or better than non-ML
approaches. One Swedish study reported a sensitivity of
93.7% and positive predictive value of 79.7% for retrospective
HAI classification using gradient boost algorithms.17 In Geneva,
researchers reported high sensitivity (88.6%–92.6%) using support-
vector machine algorithms for nosocomial infection identifica-
tion.18–20 The semiautomated surveillance method studied here has
shown a sensitivity of 97% and specificity of 98.2%.9

In this single-center ML study, we used 1 database and 1 gold
standard for performance comparisons. Performance results may
change related to the reference golden standard chosen or different
data analysis by the algorithm. However, our results are promising
because the algorithm criteria overlap with the NHSN criteria and

other features and can search all hospital inpatients. Also, the use of
automated systems can reduce human variability in criteria
identification. ML algorithms based on clinical data in the EHR
depend on the completeness of data for performance. A poor EHR
may underestimate HAIs in both manual and automated
surveillance. Using large amounts of data and hundreds of features
may limit implementation because computational capacity require-
ments are greater. Enhancing the performance of algorithms and
reducing the number of features are highly desirable objectives to
facilitate the wider dissemination and adoption of this technology.

In conclusion, the ML algorithm, which included most NHSN
criteria and >200 other features, augmented the human capacity
for HAI classification. The combination of features, including
proxy variables and risk factors for infections, achieved best
performances. Well-documented and understandable algorithm
performances may facilitate the use and incorporation of AI tools
in clinical or epidemiological practice and can help overcome the
drawbacks of traditional HAI surveillance.

Figure 1. Comparison between semiautomated
surveillance and manual surveillance regarding
the number of infections identified per site.
Note. HAIs, hospital-acquired infections; VAP,
ventilator-associated pneumonia; SSI, surgical-
site infection; BSI, bloodstream infection; UTI,
urinary tract infection.

Figure 2. Model performance (sensitivity,
precision/PPV, accuracy) considering all 447
features (all), risk variables (risk), and proxy
variables (proxy).
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